Aligning HERS Index Values With Code Requirements: Properly Assessing Windows

Jim Larsen
Cardinal Glass Industries

Chris Mathis
MC² Mathis Consulting Company

Poor Excuse...

First, Some Basic Window Performance Background...

How Do We Pick a Window?

- Aesthetics
- Cost
- Heat Loss
- Heat Gain
- Air Leakage
- Water Penetration
- Wind Load Resistance
- Sound Transmission
- Fabric Fading Potential
- Condensation Resistance

- Visible Light Transmission
- Daylighting
- Ventilation Efficiency
- Operating Characteristics
- Maintenance & Durability
- Code Compliance
- Warranty Considerations
- Other Issues...

How Do We Pick a Window?

- Aesthetics
- Cost
- Heat Loss
- Heat Gain
- Air Leakage
- Water Ps
- Wir stance
- Fading Potential condensation Resistance

- Visik' ansmission
- Jation Efficiency Operating Characteristics
- Maintenance & Durability
- Code Compliance
- Warranty Considerations
- Other Issues...

Design Pressure Elements

Wind Speed

Unit Size

Mean Roof Height

Exposure

Six basic elements are used to calculate design pressure requirements:

Importance factor

Location in Wall

Know Your Wind Speed!

Know Where & What Size

Know Your Exposure

Exposure B

Areas with numerous closely spaced obstructions such as trees and houses

Exposure C

Areas with scattered obstructions such as a coast line or open land

Certification Required by Code

R613.4 Testing and labeling. Exterior windows and sliding doors shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance characteristics and approved inspection agency to indicate compliance with AAMA/WDMA/CSA 101/I.S.2/A440.

Source: IRC 2006

Certification Examples

ABC Window and Door; Series ADC Hinged Door

Manufacturer stipulates conformance to the applicable standards

Now, let's talk about Windows and Energy

Energy Performance Basics

- U-factor
- Solar Heat Gain Coefficient
- Visible Transmittance
- Air Leakage

Historical Energy Improvement Options

- Add more layers of glass
 - Single, double, triple, etc.
 - Better insulating values
- Change frame materials
 - Move from metals to less conductive materials
 - Thermal breaks, wood, vinyl, fiberglass, composites
 - Move from aluminum to warm-edge spacers
- Add tinted or reflective glass
 - Absorb sunlight with tinted glass
 - Reject sunlight with reflective glass

The Rule of Panes

Single Pane

~ R1 *

*NOTE: Energy codes rate windows in terms of U-Factor. The use of R-Value here is illustrative for glass only (component) ranking.

The Rule of Panes

• Single Pane ~ R1

Double Pane ~ R2

(single + storm, or dual pane insulating glass)

Default Table in the Code...

TABLE R303.1.3(1)
DEFAULT GLAZED FENESTRATION *U*-FACTOR

FRAME TYPE	SINGLE PANE	DOUBLE PANE	SKYLIGHT	
			Single	Double
Metal	1.20	0.80	2.00	1.30
Metal with Thermal Break	1.10	0.65	1.90	1.10
Nonmetal or Metal Clad	0.95	0.55	1.75	1.05
Glazed Block	0.60			

19

More Panes?

• Single Pane ~ R1

Double Pane ~ R2

• Triple Pane ~ R3

Quad Pane ~ R4

Too Much Pain?

Code = "Quad" Performance in North

Less Panes with Low-E

• Single Pane ~ R1

Double Pane ~ R2

• Triple Pane ~ R3

Quad Pane ~ R4

• 2 Pane + Low-E ~ R3

• 2P + Low-E + Argon ~ R4

Quad Performance With 2 Panes

Quad Pane Equivalent

Low-E blocks (thermal) radiation

Argon slows conduction

Warm edge reduces conduction losses

The Former Problem...

- Does it have...
 - Low-E coatings?
 - Which one?
 - Gas fills? Which one?
 - Low-conductivity spacers?
- Does it meet...
 - Local codes?
 - Performance expectations?
 - Comfort expectations?
- Known Impact on Sizing Calculations?

NFRC Label

- Certified Energy Performance is Required
 - U-factor
 - SHGC

World's Best Window Co.

Millennium 2000+

Vinyl-Clad Wood Frame Double Glazing • Argon Fill • Low E Product Type: **Vertical Slider**

ENERGY PERFORMANCE RATINGS

U-Factor (U.S./I-P)

0.30

Solar Heat Gain Coefficient

0.25

ADDITIONAL PERFORMANCE RATINGS

Visible Transmittance

0.51

Air Leakage (U.S./I-P)

0.2

Manufacturer stipulates that these ratings conform to applicable NFRC procedures for determining whole product performance. NFRC ratings are determined for a fixed set of environmental conditions and a specific product size. Consult manufacturer's literature for other product performance information.

HERS and Code: Properly Assessing

www.nfrc.org

-2

Heat Loss (winter)

U-FACTOR

■ Existing **■** New

- Today's code compliant windows have less than one-quarter of the heat loss in winter than common aluminumframed, single glazed windows.
- Preventing cold glass surfaces and recurring condensation
- Big impact on winter comfort
- Heating energy savings

Heat Gain (summer)

SOLAR HEAT GAIN

■ Existing

■ New

- Today's code compliant windows are over three times more effective at blocking unwanted heat gain than common aluminum-framed, single glazed windows
- Window solar gain generally drives the air conditioning load (residential)
- Window solar gain generally drives the perimeter load (commercial)

Back to the Future: More Panes?

Single Pane ~ R1

Double Pane~ R2

• Triple Pane ~ R3

Quad Pane~ R4

• 2 Pane + Low-E ~ R3

• 2P + Low-E + Argon ~ R4

• Triple w/2 Low-E + Argon ~ R8

Winter Comfort

Low-E units are warm on winter night. Clear glass is cool.

Comfort Comparison

 The roomside glass surface temperature of a code window (U=0.35) at 0°F ambient rating condition is 56°F.

Presume Code is Comfortable

 Calculate the number of hours in a season that roomside temperature is below 56°F threshold.

 Next two plots compare hours of discomfort for a code window (U=0.35) in climate zones 5 & 6 and the comfort implications of trading back to clear double pane glass (U=0.55)

Heating Setpoint needs to be 2-3°F higher to compensate for clear glass discomfort.

Traditional Options for Solar Control

Tinted Glass

- Adds color to "body" of glass
- Absorbs sunlight and re-radiates to exterior

Reflective Glass

- Mirror appearance
- Reflects sunlight out

Summer Comfort

The Solar Spectrum

Clear Double Pane Glass SHGC ~ 0.75

Tinted Double Pane Glass SHGC 0.65 – 0.55

A New Option for Solar Control

Tinted Glass

- Adds color to "body" of glass
- Absorbs sunlight and re-radiates to exterior

Reflective Glass

- Mirror appearance
- Reflects sunlight out

Spectrally Selective (~1990)

- Clear glass appearance with solar control
- Reflects solar infrared (invisible to human eye)

"Clear" Low-E Solar Options

High Solar Gain (HSLE)

- VT ~ 80%
- Glass SHGC ~ 0.65
- This was the 1st generation low-E introduced in the early 1980s. (heating energy savings focus)
- Even though it was promoted as a "northern" glazing and backed up by energy simulations that <u>credit</u> passive solar gain, the consumer response was extremely negative due to year-round overheat.

High Solar Gain Low-E: Glass SHGC ~ 0.65

"Clear" Low-E Solar Options

High Solar Gain (HSLE)

- VT ~ 80%
- Glass SHGC ~ 0.65

Medium Solar Gain (MSLE)

- VT ~ 70%
- Glass SHGC ~ 0.40

Medium Solar Gain Low-E: Glass SHGC ~ 0.40

Clear Glass Low-E Med Solar | High Solar HERS and Code: Properly Assessing Windows - Larsen/Mathis

High solar gain low-E is hot in sunlight

If entire house was glazed with HSLE, cooling thermostat would have to be lowered by 4-5°F for equal comfort

"Clear" Low-E Solar Options

High Solar Gain (HSLE)

- VT ~ 80%
- Glass SHGC ~ 0.65

Medium Solar Gain (MSLE)

- VT ~ 70%
- Glass SHGC ~ 0.40

Low Solar Gain (LSLE)

- VT ~ 65%
- Glass ~ 0.25

Low Solar Gain Low-E: Glass SHGC ~ 0.25

Windows and Comfort

Reminder: Design Temperatures

Heating and Cooling Design Ts

Code and Window Comfort

 The prescriptive window requirements in the 2015 IECC provide a reasonable surrogate for minimally acceptable comfort

 <u>IF</u> you choose to trade-off on code window performance with high-efficiency HVAC (or lights, water, plug loads) be prepared for homeowner complaints

As learned in the 1980' beware high solar gain overheat

Global Average Area vs. Room

Same comfort in bedroom vs. living room?

2/18/2015

HERS and Code: Properly Assessing Windows - Larsen/Mathis

Code and Comfort Implications

Winter Window Comfort Analysis

66

Size Matters!

Equal Comfort = Size Specific U

Winter Window Comfort by Climate

Summer Window Comfort Analysis

Size Matters!

Equal Comfort = Size Specific SHGC

Summer Climate Effects < Winter

73

Conclusions

- Windows are not walls
 - Heat loss 5 8 times greater adjacent wall
 - Solar gain 20 50 times greater than wall
- Use caution when trading away from code defaults.
- Consult customer for their preferences on window area.
 BIG difference in the aesthetics of a space with 15% window area versus 10%.

Future Considerations?

- Remember: We size HVAC systems room by room.
- Will we consider energy use and comfort by room?
- Do we properly quantify the ENERGY IMPACTS OF DISCOMFORT?
 - What happens when people adjust their thermostat?
 - What does this do to our energy use predictions?
 - Is properly considering comfort a for of "Insurance" on our ratings and energy models?

