

Cost Effectiveness of IECC 2015 ERI

RESNET Building Performance Conference February 18, 2015

Philip Fairey

A Research Institute of the University of Central Florida

Overview

- EnergyGauge[®] USA v.3.1.02 analysis of present value life-cycle investment costs and energy cost savings to meet the 2015 IECC Energy Rating Index (ERI) compliance scores
- 1-story and 2-story, 3-bedroom home designs under best-case and worst-case orientations
- 16 TMY sites representing all 8 IECC climate zones
- Comparison basis is the 2012 IECC minimum compliance home configuration
- Cost effectiveness calculations in accordance with Section 4.6 of ANSI/RESNET 301-2014 Standard.

2012 Home Characteristics

Component	1-sty	2-sty
1st floor area (ft2)	2,000	1,200
2nd floor area (ft2)	0	1,200
total floor area (ft2)	2,000	2,400
total volume (ft3)	18,000	21,000
N-S wall length (ft)	50	40
E-W wall length (ft)	40	30
1st floor wall height (ft)	9	8
height between floors (ft)	0	1.5
2nd floor wall height (ft)	0	8
door area ft2)	40	40

2012 Window Characteristics (Best-Case; same in 2015)

Component	1-sty	2-sty
window/floor area (%)	15%	15%
total window area (ft2)	300	360
window area per floor (ft2)	300	180
N-S window fraction (%)	35%	35%
E-W window fraction (%)	15%	15%

(Homes rotated 90 degrees for Worst-Case)

2012 (& 2015) Envelope Values Climate Zones 1-3

LOCATION	IECC	Ceiling	Wall	Found.	Slab	Floor	Window	Window
LUCATION	CZ	R-value	R-value	Туре	R-value	R-value	U-factor	SHGC
Miami, FL	1A	30	13	SOG	none	n/a	0.50	0.25
Orlando, FL	2A	38	13	SOG	none	n/a	0.40	0.25
Houston, TX	2A	38	13	SOG	none	n/a	0.40	0.25
Phoenix, AZ	2B	38	13	SOG	none	n/a	0.40	0.25
Charleston, SC	3A	38	13+5	SOG	none	n/a	0.35	0.25
Charlotte, NC	3A	38	13+5	SOG	none	n/a	0.35	0.25
Ok. City, OK	3A	38	13+5	SOG	none	n/a	0.35	0.25
Las Vegas, NV	3B	38	13+5	SOG	none	n/a	0.35	0.25

(Red values indicate changes from 2009 IECC)

2012 (& 2015) Envelope Values Climate Zones 4-8

LOCATION	IECC	Ceiling	Wall	Found.	Slab	Floor	Window	Window
LUCATION	CZ	R-value	R-value	Туре	R-value	R-value	U-factor	SHGC
Baltimore, MD	4A	49	13+5	SOG	10 <i>,</i> 2ft	n/a	0.35	0.40
Kansas City, MO	4A	49	13+5	SOG	10, 2ft	n/a	0.35	0.40
Chicago, IL	5A	49	13+5	UCbsmt	n/a	30	0.32	0.40
Denver, CO	5B	49	13+5	UCbsmt	n/a	30	0.32	0.40
Minneapolis, MN	6A	49	13+10	UCbsmt	n/a	30	0.32	0.40
Billings, MT	6B	49	13+10	UCbsmt	n/a	30	0.32	0.40
Fargo, ND	7A	49	13+10	UCbsmt	n/a	38	0.32	0.40
Fairbanks, AK	8	49	13+10	UCbsmt	n/a	38	0.32	0.40

(Red values indicate changes from 2009 IECC)

Additional 2012 IECC Characteristics

ltem	2012 IECC
Envelope Leakage	CZ 1-2: 5 ach50
Programmable Thermostat	CZ 3-8: 3 ach50 Yes
High Efficiency Lighting	75%
Hot Water Piping Insulation	Yes
Max Window/Floor area	15%
Mechanical Ventilation (per 2012 IMC)	CZ 1-2: None
	CZ 3-8: 60 cfm
Sealed Air Handlers	Yes

2012 IECC Air Distribution System Standards

Foundation Type	ADS location	Duct R-value	Duct leakage
Slab on grade	Attic	8	4 cfm25/100 ft ²
Basement	Basement	6	4 cfm25/100 ft ²

FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida

2012 Equipment Standards Climate Zones 1-3

	IECC	Heating System		Cooling	s System	Water Heater		
LOCATION	CZ	Fuel	Eff	Fuel	SEER	Fuel	EF	
Miami, FL	1A	elec	7.7	elec	13	elec (50)	0.90	
Orlando, FL	2A	elec	7.7	elec	13	elec (50)	0.90	
Houston, TX	2A	elec	7.7	elec	13	elec (50)	0.90	
Phoenix, AZ	2B	elec	7.7	elec	13	elec (50)	0.90	
Charleston, SC	3A	elec	7.7	elec	13	elec (50)	0.90	
Charlotte, NC	3A	gas	78%	elec	13	gas (40)	0.59	
Ok. City, OK	ЗA	gas	78%	elec	13	gas (40)	0.59	
Las Vegas, NV	3B	gas	78%	elec	13	gas (40)	0.59	

2012 Equipment Standards Climate Zones 4-8

LOCATION	IECC	Heating System		Cooling System		Water Heater	
LUCATION	CZ	Fuel	Eff	Fuel	SEER	Fuel	EF
Baltimore, MD	4A	gas	78%	elec	13	gas (40)	0.59
Kansas City, MO	4A	gas	78%	elec	13	gas (40)	0.59
Chicago, IL	5A	gas	78%	elec	13	gas (40)	0.59
Denver, CO	5B	gas	78%	elec	13	gas (40)	0.59
Minneapolis, MN	6A	gas	78%	elec	13	gas (40)	0.59
Billings, MT	6B	gas	78%	elec	13	gas (40)	0.59
Fargo, ND	7A	gas	78%	elec	13	gas (40)	0.59
Fairbanks, AK	8	gas	78%	elec	13	gas (40)	0.59

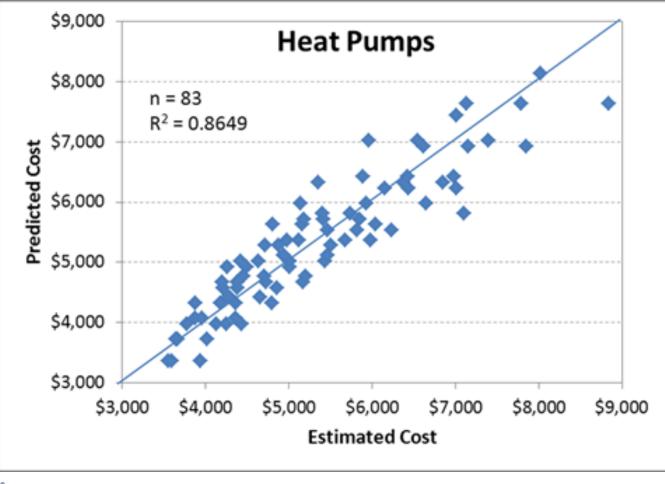
2015 ERI Compliance

An additional 64 home configurations were created to comply with the 2015 IECC Energy Rating Index (ERI) compliance criteria:

Climate Zone	ERI
Zone 1	52
Zone 2	52
Zone 3	51
Zone 4	54
Zone 5	55
Zone 6	54
Zone 7	53
Zone 8	53

Improvement Costs

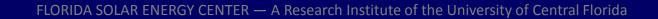
- Incremental improvement costs determined using methods developed for Building America program study (Fairey and Parker 2012)
- Largely the same as costs provided by NREL cost database (<u>www. nrel.gov/ap/retrofits</u>)
- HVAC equipment computed differently from NREL equipment costs to account for fixed costs associated with HVAC equipment installation.



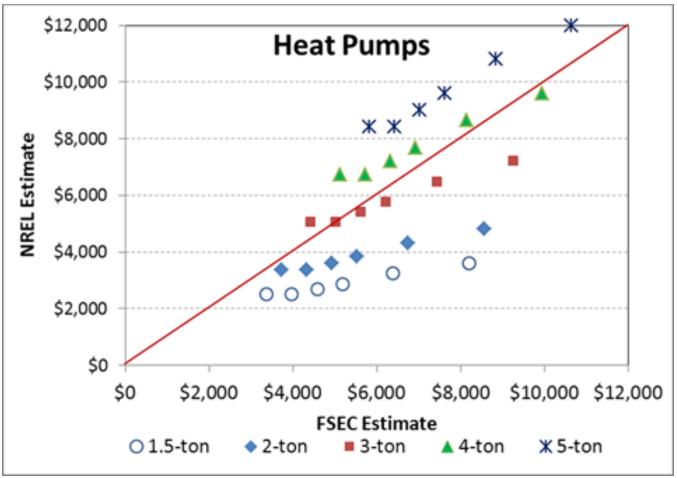
HVAC Costs

- Formula-based regressions developed from on-line retail costs of various equipment
 - Heat pumps: -5539 + 604*SEER + 6.99*tons
 - Air conditioners: -1409 +292*SEER + 520*tons
 - Gas furnace/AC: -6067 + 568*SEER + 517*tons + 4.04*kBtu + 1468*AFUE
 - Gas furnace: -3936 + 14.95*kBtu + 5865*AFUE

Heat Pump Cost Regression



NREL Cost Database


NREL Heat Pump Replacement Costs							
	Low	Low High					
SEER	\$/kBtu	\$/kBtu	\$/kBtu	± %			
13	97	170	140	26%			
14	110	180	140	25%			
15	110	190	150	27%			
16	120	200	160	25%			
17	130	210	170	24%			
18	140	220	180	22%			
19	140	230	180	25%			
20	150	230	190	21%			
21	160	240	200	20%			

FSEC°

Comparison with NREL Database

Cost Effectiveness Calculations

Economic Cost Effectiveness is calculated in accordance with Section 4.6, ANSI/RESNET 301-2014 using the RESNET-specified 2013 Economic Parameter Values as follows:

Life-Cycle Analysis Period	30 years
General Inflation Rate (GR)	2.53%
Discount Rate (DR)	4.53%
Mortgage Interest Rate (MR)	5.42%
Down payment Rate (DnPmt)	10.00%
Energy Inflation Rate (ER)	4.18%
Effective Income Tax Rate (iTR)	25.0%
Property Tax Rate (pTR)	4.0%

Key Economic Indicators

- <u>Savings to Investment Ratio (SIR)</u>: the present value of the life-cycle savings divided by the present value of the life-cycle investments. *If this* value is greater than unity, the investment is cost effective to the consumer.
- <u>Net Present Value (NPV)</u>: the present value of the life-cycle savings minus the present value of the life-cycle investments. *If this value is positive, the investment is cost effective to the consumer.*

Results by Climate Zone Average

Climate	IECC	Avg	Avg	Avg	Avg		SIR	NPV
Zone	ERI	HERS	1st cost	LC Cost	Savings	LC Save		
1	52	50	\$3,435	\$7,725	\$532	\$14,543	1.88	\$6,818
2	52	51	\$4,009	\$9,181	\$498	\$13 <i>,</i> 606	1.48	\$4,425
3	51	50	\$3,302	\$7,423	\$465	\$12,707	1.71	\$5,284
4	54	53	\$2 <i>,</i> 951	\$6,647	\$460	\$12,569	1.89	\$5,922
5	55	54	\$3,356	\$7,617	\$442	\$12,072	1.58	\$4,455
6	54	53	\$2 <i>,</i> 695	\$6,134	\$461	\$12,602	2.05	\$6,467
7	53	51	\$2,813	\$6,417	\$503	\$13,734	2.14	\$7,317
8	53	52	\$2,727	\$6,211	\$700	\$19,143	3.08	\$12,931
Average a	across all climates	52	\$3,263	\$7,399	\$488	\$13 <i>,</i> 347	1.80	\$5,948
US w	eighted averages	52	\$3,338	\$7,565	\$468	\$12,784	1.69	\$5,219

Conclusions

- Achieving the 2015 IECC ERI compliance values is cost effective in all 64 cases evaluated, including for homes with worst-case orientations
- These results are achieved with relatively easy to make improvements that are already widely employed in high-performance building programs across the nation
- Average first cost of the improvements is relatively small, ranging from \$2,700 to \$4,000
- Even in the worst case, SIR is approximately 1.5 with a NPV of \$4,425 (greater than the initial \$4,000 cost of the investment).

Additional Resources

 Fairey, P., M. Waltner, D. Goldstein and E. Makela (2014), "Cost Effectiveness of 2015 IECC Compliance using the HERS Index." Rpt. No. FSEC-CR-1981-14, Florida Solar Energy Center, Cocoa, FL.

http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1981-14.pdf

 Fairey, P. and D. Parker (2012), "Cost Effectiveness of Energy Retrofits in Pre-Code Vintage Homes in the United States." Rpt. No. FSEC-CR-1939-12, Florida Solar energy Center, Cocoa, FL.

http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1939-12.pdf

